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The aim of many studies in the field of the dynamics of soils, rocks, ice, snow, and 
other multicomponent porous materials in recent years is construction of models in order to 
describe wave processes~ There appeared to be insufficient foundation for using classical 
plasticity or linear viscoelastic theory. Experimental study of the propagation and reac- 
tion of explosive and weak longitudinal waves, and also deformation of specimens with 
different loading velocities, shows that the properties of multicomponent porous materials 
are more varied, and it is necessary to consider them as nonlinear viscoplastic materials 
with variable viscosity. 

On the basis of a model [I] taking account of these properties, a numerical solution 
is obtained below for the axisymmetric problem of blast-wave propagation in soil. Wave 
parameters are determined at different distances from the explosion, a dependence is ob- 
tained for the intensity of wave extinction on the content of components, andgraphs p(e) 
are plotted for volumetric deformation of particles during wave propagation. Results 
calculated in a computer are compared with test data which confirms the suitability of the 
model for different soils. 

Numerical solution of the problem for spherical blast-wave propagation according to the 
model in [i] is given in [2], and for deformation of soil with a prescribed variable load 
it is given in [3]. During numerical solution of the problem use is made of a finite- 
difference scheme of calculation with artificial viscosity developed for elastoplastic 
materials [4] and extended to nonlinearly viscoelastic and viscoplastic materials [2]. 

i. In accordance with the model in [i] soil is considered as a three-component 
material. The first component is free pore space, filled with air, the second is water, 
and the third hard mineral particles. We designate with ~l, ~2, and ~3 the initial volume 
content of the corresponding components, ~l + ~2 + ~3 = I. Compressibility of the first 
component is determined by the condition for failure and overcompacting of solid and liquid 
particles under load, and it is considerably less than the compressibility of pore air. 
Viscous properties and energy dissipation are connected with the instantaneous nature of 
the overcompacting process and with internal friction. Volumetric strain of the material 
c is determined by volumetric strains for the components e i. We designate ,o 0 as material 
density and Pi as that of the components: 
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Tate equations : 

free pore space 
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rest of the comonents 

§ ,)-',-,]- (i = 2,  3). 

Here p -- P0 is pressure~ PiC~, PoC~ are moduli for volumetric compression of the compo- 

nents. The equation for dynamic compression of the free pore space with p + = is adopted 
in the form 
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p - po ffi ID(~,) = Is  (~,) + k~,, k < o. 

Equations for compressibility of the rest of the components do not depend on loading 
velocity. 

Under these conditions the equation for volumetric compression of the material 

ffi w ~ = ~ (;,, D p - ~'~" ~' ' v~ r @, F), 

where 

(i.i) 

l+Ti 

] ,; (p, v) = ~ ~/ - ~ + t ; 
4=2 Pi i 

~Is/dID~ -I 
(p, v) = ~ V-~f /  ' ~ (p" v )  = p - po - i s  (8~); 
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q is volumetric viscosity coefficient. 

In the model, consideration is given to different equations for compression and un- 
loading of the free pore space. Equations for compression and unloading of the rest of the 
components are assumed to be identical. Unloading of the free pore space proceeds according 
to the relationship 
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P~ ~ + t ,: t + e~m = poCs~ + t . 

(1.2)  

Unloading commences when deformation of the free space reaches the maximum value elm. 
The equation for volumetric unloading of the material takes the form of (i.i), where 
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The plasticity condition corresponds to the Mises-Shleicher condition 

k* ( ,  - Po) l 
Sr = k, (p _ po) ,. Sr = ~r + P - -  Po, P - -  Po = - -  y (or + ~ + clz)- 

t "t- P* - -  Po 

(1.3) 
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Values of k* and p* are determined from experimental values of lateral pressure coefficient 
k T = o0/o r. It is assumed that radial Or, lateral o8, and axial o z stresses are connected 
by the condition 

oz ------~ (~r + (;e)- (1 .4)  

Consideration is given below to a Camouflet explosion of a cylindrical charge under 
conditions that explosive transformations of the explosive and expansion of the detonation 
products proceeds by a scheme of instantaneous wave detonation. During detonation through- 
out the whole volume of the charge there is instaneous establishment of pressure Pn and 
detonation product density Pn, equal to the initial explosive density. Subsequently the 
wave process is considered, including propagation through the soil of the blast wave and 
rarefaction and compression waves for the detonation products. Expansion of detonation 
products proceeds by a two-term isoentropic equation of state [5-7] 

P--Po =AP~ +BPV. (1.5) 

For trotyl Pn = 1600 kg/m 3, Q = I000 kcal/kg, n = 3.12, y = 1.25, A : 0.88 N/m 2 (kg/m3) -n, 

B = 0.62"10 5 N/m z (kg/m3) -Y. 

To describe movement of detonation products use is often made of a single-term iso- 
entropic equation of state p - P0 = AP n, in which with high explosive product densities 
n = 3. However, with considerable expansion the index of the power n should be reduced by 
a factor of about two to a value corresponding to rarefied gas. This situation limits use 
of the latter equation to the high-pressure region. In (1.5) the first term is determining 
with high pressures, but with low pressures this applies to the secondterm, which makes it 
possible to use the equation over tl~ whole process of explosion product expansion. 

The main equations of motion for a solid material in Euler variables of r and t have 
the form 

Op + u ~r + p Ou up a--T ~Fr + "7" = O, 
( o, au ) o~r ~ r - %  

P "~ + u'-OT- Or r O, 

(1.6)  

where u is particle velocity. 

Relationships (i.i), (1.3), (1.4), (1.6) form a closed set of equations for soil movement. 
The closed set of equations for detonation product movement includes (1.6) and (1.5). 

Initial conditions for the problem are: u = 0, p = Pn, P = Pn for 0 < r ! r0; u = 0, 
P = 90 = I/V0, P = P for r 0 < r, where r 0 is explosive charge radius. At-the boundary of 
the Camouflet cavity, stress of and velocity u are constant. 

The calculation scheme employed with artificial viscosity using a computer to solve 
the problem makes it possible to consider relationships at the discbntinuity implicitly. 
The disruption surface is substituted by a transition layer in which values change rapidly 
but constantly. At the same time, relationships at the shock-wave front remain in force for 
the transition layer. The stability condition corresponds to the Neuman and Richtmayer 
modified form of stability [8]. 

2. Solution is carried out for two sols: sand of average density not impregnated with 
water and water-impregnated clay. Calculated characteristics for the sandy soil are: 
density P0 = 1660 kg/m 3, moisture content w = 0.12, a z = 0.3, ~2 = 0.18, a 3 = 0.52, pQC~ = 
9.106 N/m 2, k = -4"107 N/m 2, P0"C~ = 4.9"107 N/m 2, YS = i0, YR = u + I, q = 2000 Nsec/~ 2. 

Clay characteristics are:p0 = 2030 kg/m 3, w = 0.37, al = 0.03, a 2 = 0.33, ~3 = 0.64; p0C~ = 

3"107 N/m 2, k = --3.7-i0 s N/m 2, p0C~ = 3.77"109 N/m 2, ~S = 4, ~R = u + I, D = 1200 Nsec/m 2. 

These values correspond approximately to the parameters of clay in which tests were carried 
out with cylindrical explosive charges [9]. 

For both soils it is assumed that P2 = I000 kg/m 3, C 2 = 1500 m/sec, P3 = 2650 kg/m 3, 
C 3 = 5000 m/sec, u = 7, ~3 = 5. Explosive charge radius is 0.i m. 
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The coefficient of bulk viscosity is a variable value. Average constant values of it 
are taken for calculation, selected by analogy with argillaceous and sandy soils [1-6]. 
Calculations [2] show that a change in q by a factor of 50 changes the main wave parameters 
with a spherical explosion at distances where maximum stress o r is of the order of 100-105 
N/m 2 only by a factor of 20-30%. 

We now consider the calculated results. Presented in Fig. 1 by lines 1-3 are dependences 
for maximumvalues of Or, p, and o 8 on relative distance r/r0 (here and in Fig. 2 figures 
without primes correspond to clay, and those with primes correspond to sand). Calculations 
indicate that wave fading at different distances proceeds with differentintensity. The 
intensity may increase or decrease with distance. In sand not impregnated with water with 
high ~ the intensity of fading at all distances is markedly greater than in water- 
impregnated clay with low ~i. A similar dependence for wave fading on ~i corresponds to 
the tests in [6]. 

Given in Fig. 2 is the dependence of maximum volumetric strain e m (I and i') and 
residual strain eR(2 and 2') on distance in clay and in sand. In a material with a large 
volume of free pore space e m and e R are markedly greater at all distances. At short dis- 
tances in both soils e m >> ER, and at large distances the difference in their values is 
much less. Close to the gas chamber g R < ~l. With high pressures at the explosive charge 
boundary after compression there is soil loosening. These results"correspond with test data. 

Shown in Fig. 3 is the change in pressure and deformation (lines without primes and 
with primes) with time in particles of argillaceous soil with passage of a wave. Curves i, 
1'-6, 6' relate to r/r0 = 5.47; 9.07; 15.07; 21.07; 30.67 and 39. Close to the explosive 
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charge there is an explosive shock wave, and pressure increases by a jump. At a distance 
from the area of the explosion there is a decrease in pressure, and the time for the increase 
in pressure to a maximum and its total duration increase. The wave is converted into a 
continuous compression wave. The decrease in maximum pressure with distance occurs more 
intensely than for maximum deformation. 

In Fig. 4 D and S are limiting.dynamic and static curves for volumetric compression of 
argillaceous soil corresponding to p + ~ and p + 0. Curves 1-5 determine the change in 
material condition with passage of a wave at the same distances as in Fig. 3. They were 
plotted from relationships p(t) and s(t) (Fig. 3) were exclusion of time. With increasing 
distance from the explosion, curves for volumetric compression of particles p(r depart from 
a dynamic curve and they approach a static curve in conformity with the increase in time 
for pressure increase. 

In Fig. 5 D and S are limiting curves for volumetric compression of sandy soil, and 
curves 1-5 are for volumetric compression and unloading realized at the same distances as in 
clay in Fig. 4. Here curves p(e) also approach the limiting static curve as distance in- 
creases from the point of the explosion. There is a more marked delay in sand than in clay 
for the development of deformation-related pressure, which is connected with the greater 
free porosity. Compression curves in clay pass more closely to stress axis than in sand as 
a result of the lower compressibility of argillaceous soil. 

In solving the problem, the change with time of dimensionless gas chamber (cavity) 
rn/r 0 Was also determined, where r n is dimensional radius of the chamber. Calculated results 
are given in Table I. The limiting radius is sand and clay is ~8.5 and 6. 

The volume of the gas chamber depends on soil compressibility; with increasing compressi- 
bility it decreases. Limiting values of radius correspond to test data in [6]. 

Given in Fig. 6 is the dependence of maximum values of principal stresses on distance in 
argillaceous soil. Curves i, 1'-3, 3' relate to Or, Oz, and o8, and figures without primes 
correspond to calculations, but those with primes correspond to the experiment [9]. Tests 
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were carried out in argillaceous soil (Gzhel') with the same constant of components as that 
assumed in calculations. Experimental points were obtained with r/r 0 > 80-40, and calculated 
points with r/r 0 < 50. FOr convenience of comparison lines 1'-3' are continued to the 
calculated points. Comparison points to satisfactory conformity of calculated and experi- 
mental results. 

The material model [i] reflects the main properties of soils governing their behavior 
during operation of explosive loads. With its help it is possible to obtain numerical 
solutions for a number of dynamic problems which are of practical interest. However, for 
this purpose experimental determination of equations and model constants are necessary for 
different materials. 

The agreement of calculated and test data also indicates that construction of a model 
for a nonlinear viscoplastic material is possible without introducing functionals governing 
deformation history. This situation markedly simplifies the solution of dynamic problems. 
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